Pseudorabies Virus Fast Axonal Transport Occurs by a pUS9-Independent Mechanism.

نویسندگان

  • Gina R Daniel
  • Patricia J Sollars
  • Gary E Pickard
  • Gregory A Smith
چکیده

Reactivation from latency results in transmission of neurotropic herpesviruses from the nervous system to body surfaces, referred to as anterograde axonal trafficking. The virus-encoded protein pUS9 promotes axonal dissemination by sorting virus particles into axons, but whether it is also an effector of fast axonal transport within axons is unknown. To determine the role of pUS9 in anterograde trafficking, we analyzed the axonal transport of pseudorabies virus in the presence and absence of pUS9.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The pseudorabies virus protein, pUL56, enhances virus dissemination and virulence but is dispensable for axonal transport.

Neurotropic herpesviruses exit the peripheral nervous system and return to exposed body surfaces following reactivation from latency. The pUS9 protein is a critical viral effector of the anterograde axonal transport that underlies this process. We recently reported that while pUS9 increases the frequency of sorting of newly assembled pseudorabies virus particles to axons from the neural soma du...

متن کامل

The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal transport to promote neuroinvasion

A hallmark property of the neurotropic alpha-herpesvirinae is the dissemination of infection to sensory and autonomic ganglia of the peripheral nervous system following an initial exposure at mucosal surfaces. The peripheral ganglia serve as the latent virus reservoir and the source of recurrent infections such as cold sores (herpes simplex virus type I) and shingles (varicella zoster virus). H...

متن کامل

In vitro demonstration of neural transmission of avian influenza A virus.

Neural involvement following infections of influenza viruses can be serious. The neural transport of influenza viruses from the periphery to the central nervous system has been indicated by using mouse models. However, no direct evidence for neuronal infection has been obtained in vitro and the mechanisms of neural transmission of influenza viruses have not been reported. In this study, the tra...

متن کامل

Glycoprotein D-independent spread of pseudorabies virus infection in cultured peripheral nervous system neurons in a compartmented system.

The molecular mechanisms underlying the directional neuron-to-epithelial cell transport of herpesvirus particles during infection are poorly understood. To study the role of the viral glycoprotein D (gD) in the directional spread of herpes simplex virus (HSV) and pseudorabies virus (PRV) infection, a culture system consisting of sympathetic neurons or epithelial cells in different compartments ...

متن کامل

Pseudorabies virus Us9 directs axonal sorting of viral capsids.

Pseudorabies virus (PRV) mutants lacking the Us9 gene cannot spread from presynaptic to postsynaptic neurons in the rat visual system, although retrograde spread remains unaffected. We sought to recapitulate these findings in vitro using the isolator chamber system developed in our lab for analysis of the transneuronal spread of infection. The wild-type PRV Becker strain spreads efficiently to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 89 15  شماره 

صفحات  -

تاریخ انتشار 2015